1. Department Name & Contact Information
Department of Food Science
Contact: Jean-Francois Meullenet, Professor and Head, jfmeull@uark.edu, 5-6919; FDSC Assessment Committee: Franck Carbonero, Kristen Gibson, Andy Proctor; Graduate Coordinator: Ya-Jane Wang.

2. Department Mission
The mission of the Department of Food Science is to serve as the primary source of higher education, fundamental and applied research, and public service associated with enhancing the wholesomeness, quality and availability of food, improving the health of Arkansas residents, and adding value to raw agricultural products with particular emphasis on products relevant to Arkansas. The Department of Food Science promotes programs for achieving regional, national and international recognition of excellence while contributing to the advancement of the quality of life and professional development for Arkansans.

3. Program Goals
Upon the completion of the PhD program in food science or nutrition, students will:

1. Technical Knowledge
 • Demonstrate advanced knowledge and understanding in their area of emphasis.
 • Demonstrate sufficiently broad knowledge across food science and/or nutrition disciplines outside of their core specialty area.

2. Research and Scientific Inquiry Skills
 • Demonstrate scientific enquiry skills through the research performed.
 • Demonstrate quantitative skills through the analysis of research data.

3. Communication Skills
 • Demonstrate competency in written communication through their dissertation.
 • Demonstrate competency in oral communication through their required seminars and oral defense.

4. Student Learning Outcomes

 Demonstrate advance knowledge and understanding in their area of emphasis.

 A. Assessment Measure
 • Student knowledge will be assessed by the graduate committee during the proposal meeting, the qualifying exams and the defense for PhD students. A determination by the committee is made individually based on information presented by students and through questions posed to the student. Graduate committees will design a line of questioning allowing the determination the depth of knowledge of the student in their specialty area.
This measure is direct.

Assessment measurement tool
See Appendix 1

B. Acceptable and Ideal Targets

Acceptable Target: No students in the novice category, 80% of students in the Advanced or above category and at least 20% of students in the Expert category.

Ideal Target: 100% in the Advanced or Expert category.

C. Key Personnel (who is responsible for the assessment of this measure).

Major advisor is responsible for collecting assessment data from each member of the committee. Graduate committee members are responsible for providing assessment scores.

D. Summary of Findings.

<table>
<thead>
<tr>
<th>Technical Knowledge in core scientific area (food chemistry, microbiology, etc..)</th>
<th>Novice</th>
<th>Intermediate</th>
<th>Advanced</th>
<th>Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Both acceptable and ideal targets were met according to our preliminary data. Data available is not extensive enough to draw conclusions.

E. Recommendations

No recommendation to date.

Demonstrate sufficiently broad knowledge across food science and/or nutrition disciplines outside of their core specialty area.

A. Assessment Measure

Student knowledge will be assessed by the graduate committee during the proposal meeting, the qualifying exams and the defense for PhD students. Based on the number of courses taken outside of the core emphasis area, broad knowledge is expected for PhD students. However, the graduate committee is expected to take into account courses taken by the student and the student background in establishing expectations for broad knowledge. A determination by the committee is made individually based on information presented by students and through questions posed to the student. Graduate committees will design a line of questioning allowing the determination of the depth of knowledge of the student outside of their specialty area.

This measure is direct.

Assessment measurement tool
See Appendix 1

B. Acceptable and Ideal Targets

Acceptable Target: 70% of students in the Advanced or above category and at least 20% of students in the Expert category.

Ideal Target: No students in the novice category. Less than 10% of students in the intermediate category.

C. Key Personnel (who is responsible for the assessment of this measure).
• Major advisor is responsible for collecting assessment data from each member of the committee. Graduate committee members are responsible for providing assessment scores.

D. Summary of Findings

<table>
<thead>
<tr>
<th></th>
<th>Novice</th>
<th>Intermediate</th>
<th>Advanced</th>
<th>Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical knowledge outside of the core research area.</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Both acceptable and ideal targets were met according to our preliminary data. Data available is not extensive enough to draw conclusions.

E. Recommendations

No recommendation to date.

Demonstrate scientific enquiry skills through the research performed.

A. Assessment Measure

• Student abilities will be assessed by the graduate committee during the proposal meeting and the oral defense. A determination by the committee is made individually based on information presented by students and through questions posed to the students by the committee. Graduate committees use the dissertation and the slide presentation for the oral defense to make a determination of the student research skills.

• This measure is direct.

• Assessment measurement tool

 See Appendix 2 (items 1, 2, 4, 5)

B. Acceptable and Ideal Targets

• Acceptable Target: No students in the novice category for any on the rubric sub-categories (1, 2, 4, and 5), 75% of students in the Advanced or above category and at least 50% of students in the Expert category.

• Ideal Target: 100% at or above the Advanced level for all rubric sub-categories.

C. Key Personnel (who is responsible for the assessment of this measure).

• Major advisor is responsible for collecting assessment data from each member of the committee. Graduate committee members are responsible for providing assessment scores.

D. Summary of Findings

<table>
<thead>
<tr>
<th></th>
<th>Novice</th>
<th>Intermediate</th>
<th>Advanced</th>
<th>Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic Selection</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Design Process</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Conclusions</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Limitations and Implications</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Both acceptable and ideal targets were met according to our preliminary data. Data available is not extensive enough to draw conclusions.

E. Recommendations

No recommendation to date.
Demonstrate problem quantitative skills through the analysis of research data.

A. Assessment Measure
- Student abilities will be assessed by the graduate committee during the proposal meeting and the oral defense. A determination by the committee is made individually based on information presented by students and through questions posed to the students by the committee. Graduate committees use the dissertation and the slide presentation for the oral defense to make a determination of the student quantitative skills including experimental design and analysis competencies.
- This measure is direct.
- Assessment measurement tool
 See Appendix 2 (Item 3)

B. Acceptable and Ideal Targets
- Acceptable Target: No students in the novice category for the rubric sub-category 3, 75% of students in the Advanced or above category and at least 40% of students in the Expert category.
- Ideal Target: 100% at or above the Advanced level for all rubric sub-categories.

C. Key Personnel (who is responsible for the assessment of this measure).
- Major advisor is responsible for collecting assessment data from each member of the committee. Graduate committee members are responsible for providing assessment scores

D. Summary of Findings

<table>
<thead>
<tr>
<th>Quantitative Skills</th>
<th>Novice</th>
<th>Intermediate</th>
<th>Advanced</th>
<th>Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>

Both acceptable and ideal targets were met according to our preliminary data. Data available is not extensive enough to draw conclusions.

E. Recommendations
No recommendation to date.

Demonstrate competency in written communication through their dissertation.

A. Assessment Measure
- Students’ written dissertation will be used as the basis for assessing students’ written communication skills. At the time of the dissertation submission to the graduate committee, committee members will be asked to fill out the rubric (Appendix 3) prior to the defense date.
- This measure is direct.
- Assessment measurement tools
 See Appendix 3

B. Acceptable and Ideal Targets
- Acceptable Target: No students in the novice category for any of the rubric sub-categories, 80% of students in the Advanced or above category and at least 20% of students in the Expert category.
- Ideal Target: 100% in the Advanced or Expert category for all rubric sub-categories.

C. Key Personnel (who is responsible for the assessment of this measure).
• Major advisor is responsible for collecting assessment data from each member of the committee. Graduate committee members are responsible for providing assessment scores on written communication.

D. Summary of Findings.

<table>
<thead>
<tr>
<th></th>
<th>Novice</th>
<th>Intermediate</th>
<th>Advanced</th>
<th>Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content Development</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conventions</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sources</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Syntax and Mechanics</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Both acceptable and ideal targets were met according to our preliminary data. Data available is not extensive enough to draw conclusions.

E. Recommendations

No recommendation to date.

Demonstrate competency in oral communication through their required seminars and oral defense.

A. Assessment Measure

• Students oral communication competencies will be assessed on multiple occasions during the PhD program. Assessment will be made for the two seminars required for the completion of the graduate program in food science. The grading rubric utilized in the food science seminar class will be used for that purpose. In addition, the final defense seminar will be assessed using the rubric presented in Appendix 4.

• These measures are direct.

• Assessment measurement tools

 See Appendix 4

B. Acceptable and Ideal Targets

• Acceptable Target: No students in the novice category for any of the rubric sub-categories, 80% of students in the Advanced or above category and at least 20% of students in the Expert category.

• Ideal Target: 100% in the Advanced or Expert category for all rubric sub-categories.

C. Key Personnel (who is responsible for the assessment of this measure).

• Major advisor is responsible for collecting assessment data from each member of the committee. Graduate committee members are responsible for providing assessment scores on both oral and written communication.

D. Summary of Findings.

<table>
<thead>
<tr>
<th></th>
<th>Novice</th>
<th>Intermediate</th>
<th>Advanced</th>
<th>Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organization/flow</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Language/delivery</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clarity, legibility and visual</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>designs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Both acceptable and ideal targets were met according to our preliminary data. Data available is not extensive enough to draw conclusions.
E. Recommendations
No recommendation to date.

5. Overall Recommendations
 o Since all ideal targets were made, it would be difficult at this time to make recommendations to improve our current PhD program. With only 2 PhD graduating in the Spring 2016, the data collected is too sparse. As we move forward with annual reporting for the PhD program, we anticipate that the number of students graduating within a given academic year will remain small. We will plan on reporting cumulative data in subsequent years in the hopes of getting a better assessment of student knowledge and skills.

6. Action Plan
 o None at this time

7. Supporting Attachments

Appendices 1, 2, 3 and 4 (rubrics).
Appendix 1: Assessment Rubric for Technical Knowledge

<table>
<thead>
<tr>
<th>Novice</th>
<th>Intermediate</th>
<th>Advanced</th>
<th>Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technical Knowledge in core scientific area (food chemistry, microbiology, etc..)</td>
<td>Knowledge is very narrow and in most cases inaccurate. When knowledge has been gained, it is based on unreliable sources. Understands current literature poorly.</td>
<td>Knowledge is narrow but in most cases accurate. Knowledge is mostly based on existing literature from reliable sources.</td>
<td>Knowledge is broad around the student area of expertise and is accurate. Knowledge is routed in existing literature.</td>
</tr>
<tr>
<td>Technical knowledge outside of the core research area.</td>
<td>Knowledge in other core areas of food science and/or nutrition (other than specialty) is cursory. Knowledge is less than would be expected after the completion of graduate level classes in food science and/or nutrition.</td>
<td>Displays some knowledge in other core areas of food science and/or nutrition (other than specialty). Knowledge is limited to a few disciplines.</td>
<td>Display knowledge in most food science and/or nutrition core areas. Knowledge is broad and indicative of mastery of graduate level courses taken.</td>
</tr>
</tbody>
</table>
Appendix 2: Assessment Rubric for Scientific Enquiry Skills

<table>
<thead>
<tr>
<th>Problem solving and critical thinking skills/ Scientific enquiry skills</th>
<th>Novice</th>
<th>Intermediate</th>
<th>Advanced</th>
<th>Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topic Selection</td>
<td>The research topic is defined but is general and lacks justification. The research does not seem to make hypotheses and objectives are vague. It is unlikely for the research to have an impact of the field of study.</td>
<td>The research topic and justification for the research need are defined. Hypotheses and objectives are stated but lack clarity. The research topic is not very novel and potential impact is limited.</td>
<td>The research topic and justification for the research need are well defined. Hypotheses and objectives are for the most part clear. The topic may not be truly innovative but the research has the potential to make contributions to the literature.</td>
<td>The research topic and justification for the need are well defined. Hypotheses and objectives are clear. The topic is innovative and the research has the potential to be impactful.</td>
</tr>
<tr>
<td>Design Process</td>
<td>Research design demonstrates a poor understanding of the methodologies or theoretical framework. The methods selection do not address the objectives.</td>
<td>Critical elements of the methodology or theoretical framework are missing, incorrectly developed or unfocused.</td>
<td>Critical elements of the methodology or theoretical framework are appropriately developed, however, more subtle elements are ignored or unaccounted for.</td>
<td>All elements of the methodology or theoretical framework are skillfully developed. Appropriate methodology or theoretical frameworks may be synthesized from across disciplines or sub disciplines.</td>
</tr>
<tr>
<td>Quantitative Skills</td>
<td>Displays poor quantitative skills. Does not use statistics or uses statistics incorrectly. Does not master the basics of experimental design. Lists results but they are unorganized</td>
<td>Displays average quantitative skills. Uses statistics, mostly correctly, but does not necessarily understand the basis for the tests performed. Has some knowledge of experimental design. Organizes results but the organization is not effective in revealing important findings.</td>
<td>Displays good knowledge of both experimental design and appropriate data analysis techniques. Uses some more advanced techniques for data analysis and/or visualization which allows the reveal of insightful results.</td>
<td>Displays outstanding knowledge of both experimental design and statistical analysis techniques. Uses some advanced techniques for data analysis and/or visualization which allows the reveal of insightful results.</td>
</tr>
<tr>
<td>Conclusions</td>
<td>States ambiguous, illogical or unsupported conclusions from research findings.</td>
<td>States general conclusions that because of their generality, also apply beyond the scope of the research findings.</td>
<td>States conclusions focused solely on the research findings. The conclusions are specifically from and respond specifically to the research findings.</td>
<td>States conclusions that are a logical extrapolation from the research findings.</td>
</tr>
<tr>
<td>Limitations and Implications</td>
<td>Presents limitations and implications, but they are possibly irrelevant and unsupported by the research.</td>
<td>Presents relevant and supported limitations and implications</td>
<td>Discusses relevant and supported limitations and implications.</td>
<td>Insightfully discusses in detail relevant and supported limitations and implications.</td>
</tr>
</tbody>
</table>
Appendix 3: Assessment Rubric for Written Communication Skills

<table>
<thead>
<tr>
<th>Written Communication skills (Thesis/Dissertation)</th>
<th>Novice</th>
<th>Intermediate</th>
<th>Advanced</th>
<th>Expert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content Development</td>
<td>Uses appropriate content and relevant content to develop simple ideas in some parts of the work.</td>
<td>Uses appropriate and relevant content to develop and explore ideas through most of the work</td>
<td>Uses appropriate, relevant, and compelling content to explore ideas within the context of the discipline.</td>
<td>Uses appropriate, relevant, and compelling content to illustrate mastery of the subject and conveying the writer's understanding.</td>
</tr>
<tr>
<td>Conventions</td>
<td>Attempts to use a consistent system for basic organization and presentation of the work.</td>
<td>Follows expectations appropriate to Food Science and/or Nutrition for basic organization, content and presentation.</td>
<td>Demonstrates consistent use of important conventions particular to food science and/or nutrition including basic organization, content presentation and stylistic choices.</td>
<td>Demonstrates detailed attention to and successful execution of a wide range of conventions particular to the discipline including organization, content, presentation and stylistic choices.</td>
</tr>
<tr>
<td>Sources</td>
<td>Demonstrates an attempt to use sources to support ideas in writing.</td>
<td>Demonstrates an attempt to use credible and/or relevant sources to support ideas that are appropriate for the discipline and scientific writing.</td>
<td>Demonstrates consistent use of credible and relevant sources to support ideas developed in the thesis or dissertation.</td>
<td>Demonstrates skillful use of high-quality, credible, relevant sources to support ideas developed in the thesis or dissertation.</td>
</tr>
<tr>
<td>Syntax and Mechanics</td>
<td>Uses language that sometimes impedes meaning because of errors in usage.</td>
<td>Uses language that generally conveys meaning to readers with clarity, although writing may include some errors.</td>
<td>Uses straightforward language that generally conveys meaning to readers. The language in the thesis or dissertation has few errors.</td>
<td>Uses graceful language that skillfully communicates meaning to readers with clarity and fluency, and is virtually error-free.</td>
</tr>
</tbody>
</table>
Appendix 4: Assessment Rubric for Oral Communication Skills

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Organization/flow</td>
<td>Organizational Pattern (introduction, objectives, methods, results, conclusion) is not observable within the presentation.</td>
<td>Organizational pattern is intermittently observable within the presentation.</td>
<td>Organizational pattern is clearly and consistently observable within the presentation.</td>
<td>Organizational pattern is clearly and consistently observable, is skillful and makes the content of the presentation cohesive.</td>
</tr>
<tr>
<td>Language/delivery</td>
<td>Language choices are unclear and minimally support the effectiveness of the presentation. Language is not appropriate to the audience. Presenter is difficult to understand most of the time.</td>
<td>Language choices are mundane and commonplace and partially support the effectiveness of the presentation. Language in presentation is appropriate to audience. Presenter is difficult to understand some of the time. Presenter is not enthusiastic.</td>
<td>Language choices are thoughtful and generally support the effectiveness of the presentation. Language in presentation is appropriate to audience. Presenter is not hard to understand and shows some level of enthusiasm.</td>
<td>Language choices are imaginative, memorable, and compelling and enhance the effectiveness of the presentation. Language in presentation is appropriate to audience. The presenter is enthusiastic and professional.</td>
</tr>
<tr>
<td>Clarity, legibility and visual designs</td>
<td>Visuals are not clear and not well organized. Fonts are too small or colors show poor contrast. Visuals are not pleasing. Color choices are poor. Many grammatical errors.</td>
<td>Visuals are clear and for the most part well organized. Slide organization shows signs of inexperience (e.g. too much text). Overall, they are few illustrations. Some grammatical errors.</td>
<td>Visuals are clear and well organized and for the most aesthetically pleasing. Slides are indicative of an experienced presenter and contain almost no grammatical errors. Efficient use of pictures, graphs, tables and illustrations.</td>
<td>Visuals are pleasing and professionally organized. Contain appropriate number of graphs, figures, pictures and illustration. Virtually no grammatical errors.</td>
</tr>
</tbody>
</table>

FDSC PhD 2015-2016